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Pressure and Stress Tensor in a Yukawa Fluid

B. Jancovici1
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Systems of particles interacting through a screened Coulomb potential of the
Debye�Yukawa form are considered. The pressure is obtained from the stress
tensor of the field corresponding to the Yukawa interaction, by a suitable
statistical average. This approach is especially appropriate for systems living in
a curved space. In a curved space, a self contribution to the pressure appears,
and it is essential to take it into account for retrieving a correct pressure when
the Yukawa interaction tends to the Coulomb interaction.

KEY WORDS: Yukawa potential; screened Coulomb interaction; field stress
tensor; curved space.

1. INTRODUCTION

In a recent paper(1) it has been discussed how the pressure in a Coulomb
fluid can be obtained by a suitable statistical average of the Maxwell stress
tensor. The present paper is an extension of these calculations to the case
of a fluid made of particles with Yukawa interactions. These Yukawa fluids
have been recently reviewed.(2, 3) They are of interest because they are often
used as simplified models for some complex Coulomb fluids (for instance
dusty plasmas): one species S of charged particles is given a microscopic
description, while the other charged particles are taken into account only
through the screening that they cause to the interaction between the S-par-
ticles. One is left with one species interacting through a screened Coulomb
potential which is assumed to be of the Debye�Yukawa type. In the follow-
ing, this model will be considered for its own sake. In particular, the case
when the fluid is in a curved space (of interest both for numerical simula-
tions and for looking at the curvature effects) will be investigated.
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To start with, the system under consideration is, in R3, a gas of point-
particles of number-density n, each of charge q, with a pair interaction
v(r)=q2G(r) depending on the distance r, where G(r) has the Yukawa form

G(r)=
exp(&:r)

r
(1.1)

which is the Green function of the Helmholz equation. From the thermo-
dynamic expression for the pressure

P=&�F��V (1.2)

where F is the free energy and V the volume, one can derive(4) the standard
virial expression for the excess (over ideal) pressure:

Pex=&
1
6

n2q2 | r
dG
dr

g(r) dr (1.3)

where g(r) is the pair distribution function (in the present paper, integrals
without domain specification are meant to be extended to the whole
manifold). In Section 2, it will be shown how (1.3) can be alternatively
derived from the stress tensor of the field which carries the Yukawa inter-
action. In Section 3, the above considerations will be extended to the case
of a system confined on the surface S 3 of an hypersphere. Section 4 deals
with the two-dimensional analogs of these systems. The limiting case of
Coulomb systems is considered in Section 5; the case of a pseudosphere
(a surface of constant negative curvature) is revisited in Section 6. The
results are discussed in Section 7.

2. YUKAWA GAS IN R3

In terms of the Yukawa field ,(r) created by some charge distribution,
the energy density is (1�8?)[(%,)2+:2,2] and the corresponding stress
tensor is(5)

T+&=
1

4? _�+, �&,&
1
2

$+&((%,)2+:2,2)& (2.1)

where the Greek indices label the three Cartesian axes x, y, z. In terms of
the particle positions ri ,

,(r)=q :
i

G( |r&ri | ) (2.2)
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The excess pressure is the negative of the statistical average of any
diagonal element, say &(Txx) , at some point which can be chosen as the
origin. Following the same steps as in ref. 1, one can decompose the excess
pressure into nonself and self parts. With the rotational symmetry taken
into account, the nonself part can be written as

Pnonself=
n2q2

24? | dr1 dr2[%G(r1) } %G(r2)+3:2G(r1) G(r2)] g( |r2&r1| )

(2.3)

Writing each G as the Fourier transform of 4?�(k2+:2), using as integra-
tion variables r1 and r=r2&r1 , and performing first the integration on r1 ,
one recovers (1.3). As to the self part of &(Txx) ,

Pself=&
nq2

8? | dr[(�xG(r))2&(�y G(r))2&(�z G(r))2&:2((G(r))2] (2.4)

it is a divergent integral (at small r), which can however be regularized
through the use of the same physical argument as in ref. 1: for computing
in an unambiguous way the force per unit area across the yOz plane, one
must assume that no particle sits on that plane. Thus, one removes from
the integration domain in (2.4) a thin slab &=<x<= and takes the limit
= � 0 at the end of the calculation. After some algebra with Fourier trans-
forms, this prescription gives Pself=0.

Thus, in R3,

Pex=Pnonself (2.5)

and the stress tensor approach simply reproduces the standard virial for-
mula (1.3).

3. YUKAWA GAS IN S3

We now consider a Yukawa fluid living on the three-dimensional
``surface'' S3 of an hypersphere of radius R. The Yukawa potential (1.1)
now must be changed into the Green function of the Helmholtz equation
on S 3 which is(3)

G(�)=
1
R

sinh |(?&�)
sin � sinh |?

for :R>1 (3.1a)

G(�)=
1
R

sin |(?&�)
sin � sin |?

for :R<1 (3.1b)
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where � is the angular distance seen from the center of the hypersphere
(R� is the geodesic distance) and |=|:2R2&1|1�2.

3.1. Pressure from the Stress Tensor

The analog of (2.3) is

Pnonself=
n2q2

24? | dV1 dV2[%0G(�01) } %0G(�02)+3:2G(�01) G(�02)] g(�12)

(3.2)

where 0 is the arbitrary point at which Pnonself is evaluated, dV i is a volume
element around point i, and R� ij is the geodesic distance between points
i and j. After a calculation described in Appendix A, (3.2) becomes

Pnonself=&
1
6

n2q2 | R
�G(�)

�R
g(�) dV (3.3)

where G(�) must actually be regarded as a function of two independent
variables: the angular distance � and the hypersphere radius R, as seen on
(3.1). In (3.3), the volume element is dV=4?R3 sin2 � d�. This result (3.3)
is the generalization of (1.3) to a curved space (the hypersphere). It should
be noted that now the distance r has been replaced by the radius of cur-
vature R. Only in the flat system limit does G(�, R) become a function of
the sole variable r=R� and R �G��R=r dG�dr.

Furthermore, now, the stress tensor approach provides another con-
tribution to Pex : the properly regularized part Pself does not vanish in the
S3 case. Indeed, the analog of the integral (2.4) can be split into two pieces
P0 and P1 corresponding to the contributions of geodesic distances to the
origin smaller and larger than R�0 , respectively. Only P0 is divergent (at
the origin) and must be regularized by the same prescription as in the R3

case. It is convenient to choose an infinitely small �0 . Then, the regularized
P0 can be computed by using the small-� form of (3.1), which is just the
Coulomb potential in R3. This calculation has been done in ref. 1 with the
result

P0=&
nq2

6R�0

+O(�0) (3.4)

As to P1 , with the rotational symmetry taken into account, it can be written
as

P1=
nq2

24? |
�>�0

_\1
R

dG
d� +

2

+3:2G2& dV (3.5)
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This integral (3.5) is computed in Appendix A, and the final result is

Pself=P0+P1=
1
6

nq2 _ ?:2R
sin2 ?|

&
cot ?|

R| & for :R<1 (3.6)

For :R>1, | must be replaced by i| in (3.6).
Thus the stress tensor approach gives a total excess pressure Pex which

is the sum of the nonself part (3.3) and the self part (3.6). While the nonself
part is the analog of the total excess pressure (1.3) in R3, there is now in
S3 an additional non-vanishing self term (3.6).

3.2. Pressure from the Free Energy

Another way of defining and computing the pressure in the case of S3

is to use the standard equation (1.2). If the total potential energy is

W=q2 :
i< j

G(�ij ) (3.7)

the excess free energy is given by

;Fex=&ln { 1
V N | dV1 } } } dVN exp _&; :

i< j

G(�ij )&= (3.8)

where ; is the inverse temperature and N the number of particles. From
(1.2), where here V=2?2R3, one finds for the excess pressure the value
(3.3) which was the nonself part in the stress tensor approach.

The self part (3.6) appears only if one includes in the total potential
energy the self-energies of the particles. Up to some (infinite) volume-inde-
pendent additive constant, the self-energy of a particle is obtained in
Appendix A as

eself=&
1
2

q2 |
R

cot ?| for :R<1 (3.9)

If one adds to the free energy the self term Neself , one does obtain from
(1.2) the additional self contribution (3.6) to the pressure.

These results will be discussed in Section 7.

4. TWO-DIMENSIONAL YUKAWA FLUIDS

In this section, the above considerations are adapted to the case of
two-dimensional systems. These two-dimensional systems are toy models of
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theoretical interest. It should be remembered that, in many experimental
situations of charged particles confined on a surface, the interaction never-
theless is the three-dimensional Coulomb potential rather than the two-
dimensional interactions which are considered here.

4.1. Yukawa Gas in R2

In R2, the Green function of the Helmholz equation is

G(r)=K0(:r) (4.1)

where K0 is a modified Bessel function and (1.3) is replaced by

Pex=&
1
4

n2q2 | r
dG
dr

g(r) dr (4.2)

In the field approach, the energy density is (1�4?)[(%,)2+:2,2] and
the corresponding stress tensor is

T+&=
1

2? _�+, �&,&
1
2

$+&((%,)2+:2,2)& (4.3)

where the Greek indices now label two Cartesian axes x, y.
When the rotational symmetry is taken into account, the analog of

(2.3) has the simpler form

Pnonself=
n2q2

4?
:2 | dr1 dr2 G(r1) G(r2) g( |r2&r1| ) (4.4)

(in two dimensions, the derivatives of G cancel out). As in the three-dimen-
sional case, the expression (4.4) of Pnonself can be brought to the form (4.2)
while the properly regularized Pself vanishes. Thus, Pex=Pnonself , and the
stress tensor approach reproduces (4.2).

4.2. Yukawa Gas in S2

As shown in Appendix B, the Green function of the Helmholz equation
on a sphere S 2 of radius R is

G(%)=&
?

2 sin &?
P&(&cos %) (4.5)
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where % is the angular distance, P& is a Legendre function, and &=
(1�2)[&1+(1&4:2R2)1�2] (if 2:R>1, & is complex).

The analog of (4.4) is

Pnonself=
n2q2

4?
:2 | dS1 dS2 G(%01) G(%02) g(%12) (4.6)

where dSi is an area element around point i. After a calculation similar to
the one for S3 in Appendix A, (4.6) becomes the analog of (3.3)

Pnonself=&
1
4

n2q2 | R
�G(%)

�R
g(%) dS (4.7)

(G(%) depends also on R through &). When Pself is split into the contribu-
tions P0 (P1) of geodesic distances smaller (larger) than R%0 , both parts
remain finite as %0 � 0. The regularized P0 is the same as for a plane two-
dimensional Coulomb system(1) (P0=&nq2�4) and

P1=
nq2

4?
:2 | [G(%)]2 dS (4.8)

The integral in (4.8) involves �1
&1 [P&(x)]2 dx which is tabulated in ref. 6,

and one obtains

Pself=P0+P1=
nq2

4 {&1+
:2R2

2&+1 _
?2

sin2 ?&
&2�$(&+1)&= (4.9)

where �$ is the derivative of the psi function (the psi function being the
logarithmic derivative of the gamma function).

The pressure can also be derived from the thermodynamic relation
(1.2) (with the volume V replaced by the sphere area S ). Again, if only the
two-body interactions q2G(%ij ) are used for defining the free energy F, only
Pnonself is obtained, and, for Pself to appear, it is necessary to add to the free
energy the self-energies of the particles. Each particle is found (see
Appendix B) to have, up to some (infinite) volume-independent additive
constant, the self-energy

eself=
q2

2 _ln R&�(&+1)&
?
2

cot ?&& (4.10)

This gives to the pressure the self contribution (4.9).
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4.3. Yukawa Gas in a Pseudosphere

The pseudosphere is a surface of constant negative curvature. Since it
is infinite, on it it is possible to study systems which are both infinite and
curved.

Let a be the ``radius'' of the pseudosphere, such that the Gaussian
curvature is &1�a2 (instead of 1�R2 on a sphere) and let a{ be the geodesic
distance (instead of R% on a sphere). As shown in Appendix C, the Green
function of the Helmholtz equation now is

G({)=Q&(cosh {) (4.11)

where Q& is a Legendre function of the second kind and &=(1�2)[&1+
(1+4:2a2)1�2].

The nonself pressure is given by (4.6) where G now is G({) as given in
(4.11). After a calculation similar to the one in Appendix A, one finds the
analog of (4.7):

Pnonself=&
1
4

n2q2 | a
�G({)

�a
g({) dS (4.12)

As to the self pressure, its part P0 is unchanged (P0=&nq2�4) while P1 is
given by (4.8) where G is G({). The integral involves ��

1 [Q&(x)]2 dx which
is tabulated in ref. 6, and one obtains

Pself=P0+P1=
nq2

4 _&1+2:2a2 �$(&+1)
2&+1 & (4.13)

5. COULOMB LIMIT

The results of ref. 1 for a Coulomb fluid, the one-component plasma,
can be retrieved in the limit : � 0 of the Yukawa fluid. However, before
taking that limit, one must add a neutralizing background to the Yukawa
fluid. The presence of a background is taken into account by changing g
into h= g&1 in (1.3), (3.3), (4.2), (4.7).

5.1. Coulomb Limit in R3

As : � 0, G � 1�r and (1.3) becomes

Pex=Pnonself=
1
6

n2q2 |
1
r

h(r) dr (5.1)

i.e., the excess pressure is one third of the potential energy density.
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5.2. Coulomb Limit in S3

As : � 0,

R
�G
�R

=&
6

?:2R3&
1

?R _(?&�) cot �&
1
2&+o(1) (5.2)

Since the system is finite,

n | h(�) dV=&1 (5.3)

and (3.3) becomes

Pnonself=
1
6

n2q2 |
1

?R _(?&�) cot �&
1
2& h(�) dV&

nq2

?:2R3+o(1) (5.4)

Furthermore, as : � 0, (3.6) becomes

Pself=
nq2

?:2R3&
nq2

4?R
+o(1) (5.5)

Thus, one retrieves the result of ref. 1 for the total excess pressure in the
Coulomb case :=0:

Pex=Pnonself+Pself

=
1
6

n2q2 |
1

?R _(?&�) cot �&
1
2& h(�) dV&

nq2

4?R
(5.6)

It should be noted that, in the limit : � 0, Pnonself and Pself have
opposite divergent terms O(:&2) which cancel each other in their sum Pex .
Thus, it is essential to keep the self term for retrieving the finite result (5.6).

5.3. Coulomb Limit in R2

As : � 0, K0(:r)=&ln(:r�2)&#+o(1) (where # is Euler's constant) (6)

and r dG�dr � &1. Since the Coulomb fluid exhibits perfect internal screening,
i.e.,

n | h(r) dr=&1 (5.7)
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(4.2) gives the known explicit exact result(7)

Pex=Pnonself=&
nq2

4
(5.8)

5.3. Coulomb Limit in S2

As : � 0, &=&:2R2+o(:2), P&(&cos %)=1+2& ln sin(%�2)+o(:2), (6)

and R �G��R=&(1�:2R2)+o(1). Since the system is finite,

n | h(%) dS=&1 (5.9)

and (4.7) becomes

Pnonself=&
nq2

4:2R2+o(1) (5.10)

while (4.9) becomes

Pself=
nq2

4 _&1+
1

:2R2+o(1)& (5.11)

Thus, one retrieves the result of ref. 1:

Pex=Pnonself+Pself=&
nq2

4
(5.12)

Here too, Pnonself and Pself have opposite divergent terms O(:&2)
which cancel each other.

5.4. Coulomb Limit in a Pseudosphere

As : � 0, & � 0, G({) � Q0(cosh {)=&ln tanh({�2), and a �G��a � 0.
Thus Pnonself=0. On the other hand, (4.13) becomes Pself=&nq2�4. Thus,

Pex=Pself=&
nq2

4
(5.13)

Here, the excess pressure entirely comes from the self part.
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6. VIRIAL EXPANSION IN A PSEUDOSPHERE

In a pseudosphere, Jancovici and Te� llez(9) have defined an excess
pressure by the virial expansion in powers of the density n

;pex= :
�

k=2

Bk nk (6.1)

Obviously, (6.1) does not agree with (5.13). The present section is an
erratum to ref. 9: (6.1) is not a good definition of the pressure. The
considerations about the virial expansion in ref. 9 should be replaced by
what follows.

Since on a pseudosphere, as the size of a domain is increased, its
perimeter grows as fast as its area S, there is no unique thermodynamic
limit for the free energy per unit area F�S. A reasonable definition of a bulk
quantity is provided by the usual virial expansion of the free energy,
obtained by manipulations of the partition function: the nonself part of the
excess free energy per particle can be defined by

;fnonself= :
�

k=2

Bk

k&1
nk&1 (6.2)

where each virial coefficient Bk is to be computed in the infinite system
limit (for eliminating the boundary effects) before the sum is performed.

Fom this free energy (6.2), one can derive the nonself part of the
excess pressure by the standard relation Pnonself=n2 �fnonself ��n provided
one takes into account an unusual feature (which has been disregarded in
ref. 9): the interaction law G and therefore the excess free energy per par-
ticle fex depends on the radius of curvature a (the virial coefficients Bk do
depend on a): it is convenient to consider fex as a function of the two inde-
pendent variables n and na2. The variation of density in the above defini-
tion of the excess pressure can be considered as associated to a variation
of a while the average number of particles in some domain remains con-
stant as the area of this domain varies proportional to a2. In other words,
for defining the excess pressure, the partial derivative of the excess free
energy with respect to n must be taken at constant na2, and one must write
more precisely

Pnonself=n2 \�fnonself

�n +na2
(6.3)

In the case of a Coulomb system of point particles, for dimensional reasons,
fnonself depends on n and a only through the combination na2 (Bk is propor-
tional to a2(k&1)), and (6.3) gives Pnonself=0.
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Furthermore, self effects must be taken into account. For a Coulomb
system, with an interaction G=&ln tanh({�2), the self-energy of a particle
of small radius r0=a{0

eself= fself=&
q2

2
ln

r0

2a
=&

q2

4
ln

r2
0n

4na2 (6.4)

does give a contribution to the pressure

Pself=n2 \�fself

�n +na2
=&

nq2

4
(6.5)

in agreement with (5.13).

7. DISCUSSION

In a flat space R3 or R2, the stress tensor approach simply reproduces
the expected pressure. There is no self contribution.

The situation is more involved in the finite curved spaces S 3 and S 2,
and in the infinite pseudosphere. The very definition of the pressure is not
obvious. An operational definition would be the force per unit area exerted
on a wall bounding the fluid. However, when the system is a finite one,
such a pressure would depend on the position and shape of this wall, and
also, for a fixed curvature, the mere presence of a boundary would change
the size of the system. In the case of a pseudosphere, a system with a
boundary makes difficulties because its perimeter grows as fast as its area.
The stress tensor approach, which has been used here, has the advantage
of defining a bulk pressure which does not refer to any wall. But it raises
a question: should the self part be included or not in the definition of the
pressure? One might be tempted to follow the usual procedure of discard-
ing self effects. However, as seen in Section 5, it is necessary to keep this
self term for retrieving a finite pressure in the Coulomb case. Thus, the
nonself and self parts of the pressure are somewhat entangled with each
other. For a flat system in R2 or R2, the (properly regularized) self pressure
vanishes, for a Yukawa system and thus in the Coulomb limit. However,
the same pressure for a flat Coulomb system can be obtained by starting
with a Yukawa system (plus background) in S3, S 2, or the pseudosphere,
going to the Coulomb limit : � 0, and finally going to the limit R � � or
a � � of a flat system; if this route is followed, it is mandatory to keep the
self part of the pressure.

The entanglement of the nonself and self parts of the pressure is espe-
cially apparent in the two-dimensional case. The result for a flat Coulomb
system, Pex=&nq2�4 can be obtained by starting with a Yukawa system
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on a sphere S2, and taking the limits : � 0 and R � �. These limits can
be taken in one order or in the opposite one, or even for a fixed value
of :R, giving the same final result for Pex . However, the separate contribu-
tions Pnonself and Pself do depend on the way the limits are taken.

In a curved space, the pressure from the stress tensor approach can
also be retrieved from the usual thermodynamic definition (1.2) (the
negative of the derivative of the free energy with respect to the volume, or
its two-dimensional analogs). If one deals from the start with a Coulomb
fluid in S3 or S 2, there is some arbitrariness in the definition of the self-
energy of a particle, (8) and only a ``reasonable'' choice allows to retrieve(1)

the stress tensor pressure. In the case of a Yukawa fluid, the self-energy
(3.9) or (4.10) is sufficiently well-defined for the calculation of the pressure.
Starting with a Yukawa fluid and going afterwards to the Coulomb limit
avoids the above mentioned arbitrariness.

It should be noted that, in curved spaces, the stress tensor approach
defines the pressure as the response to a change of the radius R or a; the
thermodynamic approach does the same. However, as R or a changes, the
interaction potential changes, and therefore the derivative &�F��V is not
taken at constant interaction potential. This is a bit unusual! It has to be
taken into account when using the virial expansion which seems to exist in
the pseudosphere.

The conclusion is that there is some arbitrariness in the definition of
the pressure in a curved space. However, the stress tensor approach, in
which there is some reason for including the self contribution, gives a
pressure which seems acceptable.

APPENDIX A. FORMULAS IN S3

For deriving (3.3) from (3.2), one first note that, since the integrand
in (3.2) depends only on the shape of the geodesic triangle formed by
points (0, 1, 2), the integration can be performed on another pair of posi-
tions (0, 2), rather than (1, 2). By an integration by parts on 0, the term
%0G(�01) } %0G(�02) can be replaced by &G(�01) q0 G(�02). Using the
Helmholtz equation with a point source

[&q0+:2] G(�02)=&4?$(3)(�02) (A.1)

gives

Pnonself=
n2q2

24? _4? | dV2 G(�12) g(�12)

+2:2 | dV0 dV2G(�01) G(�02) g(�12)& (A.2)
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Using the Dirac notation

G(�ij )=�i } 4?
&q+:2 } j� (A.3)

where i, j are positions, gives for the integral on 0 in (A.2)

| dV0G(�10) G(�02)=| dV0 �1 } 4?
&q+:2 } 0��0 } 4?

&q+:2 } 2�
=�1 } (4?)2

(&q+:2)2 } 2�=&4?
�G(�12)

�(:2)
(A.4)

Thus, with simpler notations V and � instead of V2 and �12 , (A.2) becomes

Pnonself=
n2q2

6 | dV _G(�)&:
�G(�)

�: & g(�) (A.5)

Finally, since RG(�) as defined in (3.1) depends on : only through :R,
:(�G��:)=�(RG)��R and (A.5) gives (3.3).

For deriving (3.6) from (3.4) and (3.5), first one performs an integra-
tion by parts which transforms (3.5) (where dV=4?R3 sin2 � d�) into

P1=
nq2

24? {|�>�0

[&G(�) q G(�)+3:2[G(�)]2] dV

&_G(�)
dG
d�

4?R sin2 �&�=�0
= (A.6)

Since G obeys the Helmholz equation and �{0, in (A.6) the Laplacian q
can be replaced by :2. Furthermore, the integral remains convergent as
�0 � 0 and can be extended to the whole hypersphere. With G given by
(3.1), this is an elementary integral on trigonometric or hyperbolic func-
tions. Adding the small-�0 form of the last term of (A.6), one finds

P1=
1
6

nq2 _ ?:2R
sin2 ?|

&
cot ?|

R|
+

1
R�0

+O(�0)& for :R<1 (A.7)

Adding (3.4) and (A.7) gives (3.6). A similar calculation can be done when
:R>1.
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For computing the self-energy (3.9) of a particle pictured as a spherical
surfacic charge of radius r0=R sin �0 , in the small-�0 limit one can use the
point-particle potential (3.1). As �0 � 0

eself=
q2

2
G(�0)=

q2

2 _ 1
r0

&
| cot ?|

R
+O(�0)& for :R<1 (A.8)

Up to the volume independent term q2�2r0 (which becomes infinite in the
�0 � 0 limit), (A.8) does give (3.9). For :R>1, | must be replaced by i|.

APPENDIX B. FORMULAS IN S2

For finding the Green function (4.5), one notes that the Helmholtz
equation in S2 (similar to (A.1) with 2?$(2) instead of 4?$(3)) reduces to
the Legendre equation, (6) with the variable cos % and the parameters
&=(1�2)[&1+(1&4:2R2)1�2], +=0. The solution singular at %=0 and
regular at %=? is the Legendre function

P&(&cos %)=F \&&, &+1; 1;
1+cos %

2 + (B.1)

Indeed, at %=? the hypergeometric function F is regular, and as % � 0 its
behavior(10)

P&(&cos %)=
2 sin &?

? _ln sin
%
2

+#+�(1+&)+
?
2

cot &?&+o(1) (B.2)

is2 such that (4.5) does behave like &ln %.
For deriving the self-energy (4.10), one looks at the behaviour of

(q2�2) G(%0), considering r0=R%0 as a small fixed particle radius. As
%0 � 0, using (B.2) in (B.1) gives (4.10).

APPENDIX C. GREEN FUNCTION IN A PSEUDOSPHERE

The Helmholtz equation in a pseudosphere of ``radius'' a reduces to
the Legendre equation(6) with the variable cosh { and the parameters
&=(1�2)[&1+(1+4:2a2)1�2], +=0. The solution singular at {=0 and
vanishing at infinity is Q&(cosh {). For small {, it does behave(10) like
&ln {.
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2 There is a minor misprint in ref. 10. In Eq. (15) p. 164, # must be replaced by 2# for this
equation to agree with Eq. (12) p. 110.
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